
1

G52CPP
C++ Programming

Lecture 10

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Last lecture

• Constructors
– Default constructor – needs no parameters

• Default parameters
• Inline functions

– Like safe macros in some ways

• Function definitions outside the class
declaration
– i.e. .h files and .cpp files

3

This lecture

• new and delete

• Inheritance

• Virtual functions

4

new and delete

For reference purposes
We will see plenty of examples of

use over the next few weeks

5

new vs malloc
MyClass * pOb = new MyClass ;

• new knows how big the object is
– No call to sizeof() is needed (unlike malloc())

• new creates an object (and returns a pointer)
– Allocates memory (probably in same way as malloc())

• new knows how to create the object in memory
– C++ objects can consist of more than the visible data members

(an example later, with hidden vtable ptrs)

• new calls the constructor (malloc() will not!)

• new throws an exception (bad_alloc) if it fails
– By default, unless you tell it not to (e.g. new(nothrow) int)
– Some older compilers may return NULL – but new ones should

not (malloc() returns NULL on failure)

6

delete
MyClass * pOb = new MyClass ;

delete pOb;

• delete destroys an object
– It cares about the object type
– Calls the destructor of the class it thinks the

thing is (using pointer type) and then frees
the memory

7

delete, new[] and delete[]

• new and delete have a [] version for
creating and destroying arrays
– Default constructor is called for the elements

• Same as for arrays created on the stack

• You MUST match together:
new and delete

new [] and delete []

malloc () and free()

8

Example : new and delete
class MyClass
{
public:

int ai[4];
short j;

};
int main()
{

MyClass* pOb = new MyClass;
MyClass* pObArray = new MyClass[4];

pOb->ai[2] = 3;
pObArray[3].j = 5;
pObArray[1].ai[3] = 5;

delete pOb;
delete [] pObArray;
return 0;

}

Uses default constructor
for each object in array

Can pass values to
constructor here
inside ()

delete [] to match new []

Could use empty ()
with new to pass no
parameters

9

Can new/delete basic types

int* pInt = new int;
int* pIntArray = new int[50];
int* pInt2 = new int(4);

*pInt = 65;
pIntArray[1] = 9;

delete pInt;
delete [] pIntArray;
delete pInt2;

malloc() just declares memory, and you tell the compiler
to treat it as if it was a struct, array or type

new actually constructs something of that type

Pass an initial value
of 4 to ‘constructor’

NOT AN ARRAY

Array of 50 elements
NOT PARAM FOR
CONSTRUCTOR!

10

Comments on delete

• You MUST delete anything which you create
using new
MyClass* pOb1 = new MyClass;

delete pOb1;

MyClass* pOb2 = new MyClass(5);

delete pOb2;

• You MUST delete any arrays which you create
using new … []
MyClass* pObArray = new MyClass[6];

delete [] pObArray;

• You MUST free any memory which you
malloc /alloc /calloc /realloc

11

Pointer problems
• The same kind of problems can occur with new

and delete as with malloc () and free() :
– Memory leak (leaking memory – less available)

• Not calling delete on all of the objects or arrays that you new

– Dereferencing a pointer after you have freed/deleted
the memory it points to

• Effects may not be immediately obvious!

– Calling delete multiple times on same pointer

• Plus some new ones:
– Not matching the array and non-array new & delete
int* p = new int; delete [] p; // WRONG!

int* p = new int[4]; delete p; // WRONG!

• And references don’t help
– The same problems with references as with pointers

12

Constructors and destructors
• Constructor is called:

– When objects are created on the stack
– Upon creation of globals/static locals
– When new is used to create an object
– NOT called when malloc() is called

• Destructor is called:
– When objects on the stack are destroyed
– When globals and static locals are destroyed
– When delete is used to destroy an object
– NOT called when free() is called

• malloc() and free() do not create objects
– They allocate memory and you tell the compiler to

treat the memory as if it held a struct/object/array/etc
– Safe for C-style structs but not safe for C++ style

structs and classes

13

What new really does
When you call new:

– e.g. using MyClass* ob = new MyClass;

the compiler generates code to:
– Call operator new (to allocate the memory)

• You can change the way that new allocates memory
– Look up “operator new” for details

• You can create an object at a specific memory location
– Look up “placement new” for details

– Create the object
• Including hidden data (e.g. vpointer s)

• Constituents get constructed first
– i.e. base class first, aggregated objects first

• Uses the initialisation list to provide initial values

– Calls the constructor code

14

When is a duck a duck?

and when is it a
musical

instrument

15

What is a duck
• Which question defines a duck?

– Does it have a beak?
– Does it ‘quack’?
– Does it fly?
– Does it look like a duck?

• To be a duck, what does it need to do?
– We need to understand what we mean by a

duck in the current context
• In program terms, the properties are

defined by the operations and attributes
– So know what these are!

16

What is inheritance?
• Inheritance models the ‘is-a’ relationship

– i.e. the sub-class object is-a type of base class object
– Be sure that inheritance really is what you want

before you use it
• Define a new class (sub-class/derived class) in

terms of a current class (superclass/base class)
– Take the general class and extend it

• Why do it?
– Get all member functions and data of the base class,

for free, without having to (re-)write them yourself
• How can we extend it?

– Add functionality?
– Change or refine functionality? (within reason)
– Remove functionality? (and still work as base class?)

17

Using inheritance

• Use the : notation (after the class name)
class MyClass : public MySuperClass

{

}

• Equivalent of Java’s ‘extends ’, i.e.:
class MyClass extends MySuperClass

• A class can have multiple base classes
– See lecture 19 – some complexities

Maximum access level,
assume public for the moment

18

Inheritance
• Define a new class (sub-class or derived class)

in terms of a current class (super/base class)
• Inheritance models the ‘is-a ’ relationship

– If we have a class which models a bird,
– And we want a class for a specific species of bird
– Then we can take the general class and extend it

class Bird
{
public:

void eat();
void sit();

};

class FlyingBird
: public Bird
{
public:

void fly();
};

Note: Function implementation is probably in associated .cpp files

19

A new access type: protected

• Reminder: public access
– Anything can access the member

• Reminder: private access
– Only class members can access the members
– NOT even sub-class members
– The main reason for being a class member

• New idea: protected access
– Like private but also allows sub-class members

to access the members

• Note: No concept of (Java-like) package-level
access in C++

20

Base-class access rights
Think: public -> protected -> private
class MyClass : public MySuperClass

– “At most public access” (i.e. no change)
– public /protected members are inherited with the same

access as in the base class
– The most common form of inheritance

class MyClass : protected MySuperClass
– “At most protected access”
– public /protected members are inherited as protected

members of the sub-class
class MyClass : private MySuperClass

– “At most private access”
– public /protected members are inherited as private

members of the sub-class
– Consider whether composition is more appropriate

• Note: You do NOT get access to private
base-class members, whatever you use

21

Base class and derived class
class BaseClass

{

public:

int iBase;

long lBase;

};

BaseClass b

int iBase

long lBase

SubClass s

int iBase

long lBase

int iSub
void foo()
{

BaseClass b;
SubClass s;

}

class SubClass

: public BaseClass

{

public:

int iSub;

};

Simple single-inheritance: the base class
part appears inside the sub-class

22

Comparison : aggregation
class Class1

{

public:

int iBase;

long lBase;

};

BaseClass b

int iBase

long lBase

ContainerClass s

int c.iBase

long c.lBase

int iSub
void foo()
{

Class1 b;
ContainerClass s;

}

class ContainerClass

{

public:

Class1 c;

int iSub;

};

Simple aggregation: the contained class
part appears inside the containing class

23

Example: overriding methods
class BaseClass
{
public:

char* foo() { return "BaseFoo"; }
char* bar() { return "BaseBar"; }

};
class SubClass : public BaseClass
{
public:

char* foo() { return "SubFoo"; }
// No override for bar()

};
int main()
{

SubClass* pSub = new SubClass;
printf("foo=%s bar=%s\n", pSub->foo(), pSub->bar());
delete pSub;

}

bar() from base class
is available unchanged
in sub-class

sub-class “overrides”
(replaces) the foo()
function from the base
class

Using dynamically allocated memory

24

Sub-class objects ARE base class objects
class BaseClass

{

public:

int iBase;

long lBase;

};

BaseClass b

int iBase

long lBase

SubClass s

int iBase

long lBase

int iSubvoid foo()
{

SubClass* pSub = new SubClass();

BaseClass* pBase = pSub; // POINTERS!

// Same applies to references (tomorrow)!

delete pSub;

}

class SubClass

: public BaseClass

{

public:

int iSub;

};

25

Question

Consider functions which exist in the base-class,
and are overridden in the sub-class

When called using a base class (type) pointer
(or reference), which of the following is true?

a) The sub-class versions of functions are used
(because the object is really of the sub-class
type) [Note: this is the usual case in Java]

b) The base-class versions of functions are used
(because the pointer type is used to determine
the function to use)

Example follows, on the next slide, for clarity

26

Example: Overridden function
class BaseClass
{
public:

char* foo() { return "BaseFoo"; }
};

class SubClass : public BaseClass
{
public:

char* foo() { return "SubFoo "; }
};

int main()
{

SubClass* pSub = new SubClass;
BaseClass* pSubAsBase = pSub; // Pointers

printf("foo S=%s SaB=%s\n",
pSub->foo() , pSubAsBase->foo());

delete pSub;
}

Question:
When functions are
called from base-class
pointers/references,
which functions are
called?

i.e. what do these do?

pSub->foo()

pSubAsBase->foo()

Object is of type SubClass
Pointer is of type BaseClass

27

Answer to the question
You can choose which you want to apply
(by making the function virtual or not)

a) The functions in the sub-class are used
(because the object is really of the sub-class
type)

This method applies if the functions are virtual

b) The functions in the base-class are used
(because the pointer type is used to determine
the function to use)

This method applies if virtual is not specified

28

Example: virtual functions
class BaseClass

{

public: char* foo() { return "BaseFoo"; }

virtual char* bar() { return "BaseBar"; }

};

class SubClass : public BaseClass

{

public: char* foo() { return "SubFoo"; }

virtual char* bar() { return "SubBar "; }

};

int main()

{

SubClass* pSub = new SubClass;

BaseClass* pSubAsBase = pSub;

printf("pSubAsBase->foo() %s\n", pSubAsBase->foo());

printf("pSubAsBase->bar() %s\n", pSubAsBase->bar());

delete pSub;

}

29

Next lecture

• The this pointer and static members

• References
– Act like pointers
– Look like values

• More const
• And mutable

