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G52CPP 
C++ Programming

Lecture 10

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html
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Last lecture

• Constructors
– Default constructor – needs no parameters

• Default parameters
• Inline functions

– Like safe macros in some ways

• Function definitions outside the class 
declaration
– i.e. .h files and .cpp files
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This lecture

• new and delete

• Inheritance

• Virtual functions
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new and delete

For reference purposes
We will see plenty of examples of 

use over the next few weeks
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new vs malloc
MyClass * pOb = new MyClass ;

• new knows how big the object is 
– No call to sizeof() is needed (unlike malloc() )

• new creates an object (and returns a pointer)
– Allocates memory (probably in same way as malloc() )

• new knows how to create the object in memory
– C++ objects can consist of more than the visible data members 

(an example later, with hidden vtable ptrs)

• new calls the constructor (malloc() will not!)

• new throws an exception (bad_alloc ) if it fails
– By default, unless you tell it not to (e.g. new(nothrow) int )
– Some older compilers may return NULL – but new ones should 

not (malloc() returns NULL on failure)



6

delete
MyClass * pOb = new MyClass ;

delete pOb;

• delete destroys an object
– It cares about the object type
– Calls the destructor of the class it thinks the 

thing is (using pointer type) and then frees 
the memory
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delete, new[] and delete[]

• new and delete have a [] version for 
creating and destroying arrays 
– Default constructor is called for the elements

• Same as for arrays created on the stack

• You MUST match together:
new and delete

new [] and delete []

malloc () and free()
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Example : new and delete
class MyClass 
{ 
public:

int ai[4]; 
short j; 

};
int main()
{

MyClass* pOb = new MyClass;
MyClass* pObArray = new MyClass[4];

pOb->ai[2] = 3;
pObArray[3].j = 5;
pObArray[1].ai[3] = 5;

delete pOb;
delete [] pObArray;
return 0;

}

Uses default constructor
for each object in array

Can pass values to
constructor here
inside ()

delete [] to match new []

Could use empty ()
with new to pass no
parameters
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Can new/delete basic types

int* pInt = new int;
int* pIntArray = new int[50];
int* pInt2 = new int(4);

*pInt = 65;
pIntArray[1] = 9;

delete pInt;
delete [] pIntArray;
delete pInt2;

malloc() just declares memory, and you tell the compiler 
to treat it as if it was a struct, array or type

new actually constructs something of that type

Pass an initial value
of 4 to ‘constructor’

NOT AN ARRAY

Array of 50 elements
NOT PARAM FOR
CONSTRUCTOR!
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Comments on delete

• You MUST delete anything which you create 
using new
MyClass* pOb1 = new MyClass;

delete pOb1;

MyClass* pOb2 = new MyClass(5);

delete pOb2;

• You MUST delete any arrays which you create 
using new … []
MyClass* pObArray = new MyClass[6];

delete [] pObArray;

• You MUST free any memory which you 
malloc /alloc /calloc /realloc
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Pointer problems
• The same kind of problems can occur with new

and delete as with malloc () and free() :
– Memory leak (leaking memory – less available)

• Not calling delete on all of the objects or arrays that you new

– Dereferencing a pointer after you have freed/deleted 
the memory it points to

• Effects may not be immediately obvious!

– Calling delete multiple times on same pointer

• Plus some new ones:
– Not matching the array and non-array new & delete
int* p = new int; delete [] p; // WRONG!

int* p = new int[4]; delete p; // WRONG!

• And references don’t help
– The same problems with references as with pointers
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Constructors and destructors
• Constructor is called:

– When objects are created on the stack
– Upon creation of globals/static locals
– When new is used to create an object
– NOT called when malloc() is called

• Destructor is called:
– When objects on the stack are destroyed
– When globals and static locals are destroyed
– When delete is used to destroy an object
– NOT called when free() is called

• malloc() and free() do not create objects
– They allocate memory and you tell the compiler to 

treat the memory as if it held a struct/object/array/etc
– Safe for C-style structs but not safe for C++ style 

structs and classes
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What new really does
When you call new: 

– e.g. using MyClass* ob = new MyClass;

the compiler generates code to:
– Call operator new (to allocate the memory)

• You can change the way that new allocates memory
– Look up “operator new” for details

• You can create an object at a specific memory location
– Look up “placement new” for details

– Create the object
• Including hidden data (e.g. vpointer s)

• Constituents get constructed first
– i.e. base class first, aggregated objects first

• Uses the initialisation list to provide initial values

– Calls the constructor code
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When is a duck a duck?

and when is it a 
musical 

instrument
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What is a duck
• Which question defines a duck?

– Does it have a beak?
– Does it ‘quack’?
– Does it fly?
– Does it look like a duck?

• To be a duck, what does it need to do?
– We need to understand what we mean by a 

duck in the current context
• In program terms, the properties are 

defined by the operations and attributes
– So know what these are!
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What is inheritance?
• Inheritance models the ‘is-a’ relationship

– i.e. the sub-class object is-a type of base class object
– Be sure that inheritance really is what you want 

before you use it
• Define a new class (sub-class/derived class) in 

terms of a current class (superclass/base class)
– Take the general class and extend it

• Why do it?
– Get all member functions and data of the base class, 

for free, without having to (re-)write them yourself
• How can we extend it?

– Add functionality?
– Change or refine functionality? (within reason)
– Remove functionality? (and still work as base class?)
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Using inheritance

• Use the : notation (after the class name)
class MyClass : public MySuperClass

{

}

• Equivalent of Java’s ‘extends ’, i.e.:
class MyClass extends MySuperClass

• A class can have multiple base classes
– See lecture 19 – some complexities

Maximum access level,
assume public for the moment
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Inheritance
• Define a new class (sub-class or derived class)

in terms of a current class (super/base class)
• Inheritance models the ‘is-a ’ relationship

– If we have a class which models a bird, 
– And we want a class for a specific species of bird
– Then we can take the general class and extend it

class Bird
{
public:

void eat();
void sit();

};

class FlyingBird
: public Bird
{
public:

void fly();
};

Note: Function implementation is probably in associated .cpp files
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A new access type: protected

• Reminder: public access
– Anything can access the member

• Reminder: private access
– Only class members can access the members
– NOT even sub-class members
– The main reason for being a class member

• New idea: protected access
– Like private but also allows sub-class members 

to access the members

• Note: No concept of (Java-like) package-level 
access in C++
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Base-class access rights
Think: public -> protected -> private
class MyClass : public MySuperClass

– “At most public access” (i.e. no change)
– public /protected members are inherited with the same 

access as in the base class
– The most common form of inheritance

class MyClass : protected MySuperClass
– “At most protected access”
– public /protected members are inherited as protected

members of the sub-class 
class MyClass : private MySuperClass

– “At most private access”
– public /protected members are inherited as private

members of the sub-class
– Consider whether composition is more appropriate

• Note: You do NOT get access to private
base-class members, whatever you use
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Base class and derived class 
class BaseClass

{ 

public:

int iBase;

long lBase;

};

BaseClass b

int iBase

long lBase

SubClass s

int iBase

long lBase

int iSub
void foo()
{

BaseClass b;
SubClass s;

}

class SubClass

: public BaseClass

{

public:

int iSub;

};

Simple single-inheritance: the base class
part appears inside the sub-class
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Comparison : aggregation 
class Class1

{ 

public:

int iBase;

long lBase;

};

BaseClass b

int iBase

long lBase

ContainerClass s

int c.iBase

long c.lBase

int iSub
void foo()
{

Class1 b;
ContainerClass s;

}

class ContainerClass

{

public:

Class1 c; 

int iSub;

};

Simple aggregation: the contained class
part appears inside the containing class
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Example: overriding methods
class BaseClass
{
public:

char* foo() { return "BaseFoo"; }
char* bar() { return "BaseBar"; }

};
class SubClass : public BaseClass
{
public:

char* foo() { return "SubFoo"; }
// No override for bar()

};
int main()
{

SubClass* pSub = new SubClass;
printf("foo=%s bar=%s\n", pSub->foo(), pSub->bar() );
delete pSub;

}

bar() from base class
is available unchanged
in sub-class

sub-class “overrides”
(replaces) the foo()
function from the base
class

Using dynamically allocated memory
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Sub-class objects ARE base class objects
class BaseClass

{ 

public:

int iBase;

long lBase;

};

BaseClass b

int iBase

long lBase

SubClass s

int iBase

long lBase

int iSubvoid foo()
{

SubClass* pSub = new SubClass();

BaseClass* pBase = pSub; // POINTERS!

// Same applies to references (tomorrow)!

delete pSub;

}

class SubClass

: public BaseClass

{

public:

int iSub;

};
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Question

Consider functions which exist in the base-class,
and are overridden in the sub-class

When called using a base class (type) pointer 
(or reference), which of the following is true?

a)  The sub-class versions of functions are used
(because the object is really of the sub-class 
type) [Note: this is the usual case in Java]

b) The base-class versions of functions are used
(because the pointer type is used to determine 
the function to use)

Example follows, on the next slide, for clarity
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Example: Overridden function
class BaseClass
{
public:

char* foo() { return "BaseFoo"; }
};

class SubClass : public BaseClass
{
public:

char* foo() { return "SubFoo "; }
};

int main()
{

SubClass* pSub = new SubClass;
BaseClass* pSubAsBase = pSub; // Pointers

printf( "foo  S=%s SaB=%s\n", 
pSub->foo() , pSubAsBase->foo() );

delete pSub;
}

Question:
When functions are
called from base-class
pointers/references,
which functions are
called?

i.e. what do these do?

pSub->foo()

pSubAsBase->foo()

Object is of type SubClass
Pointer is of type BaseClass
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Answer to the question
You can choose which you want to apply
(by making the function virtual or not)

a)  The functions in the sub-class are used
(because the object is really of the sub-class 
type)

This method applies if the functions are virtual

b) The functions in the base-class are used
(because the pointer type is used to determine 
the function to use)

This method applies if virtual is not specified
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Example: virtual functions
class BaseClass

{

public: char* foo() { return "BaseFoo"; }

virtual char* bar() { return "BaseBar"; }

};

class SubClass : public BaseClass

{

public: char* foo() { return "SubFoo"; }

virtual char* bar() { return "SubBar "; }

};

int main()

{

SubClass*  pSub = new SubClass;

BaseClass* pSubAsBase = pSub;

printf( "pSubAsBase->foo() %s\n", pSubAsBase->foo() );

printf( "pSubAsBase->bar() %s\n", pSubAsBase->bar() );

delete pSub;

}
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Next lecture

• The this pointer and static members

• References
– Act like pointers
– Look like values

• More const
• And mutable


